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NEW EXACT SOLUTION OF THE PROBLEM

OF ROTATIONALLY SYMMETRIC COUETTE–POISEUILLE FLOW

UDC 532.526S. N. Aristov and D. V. Knyazev

An exact solution is obtained for the problem of steady-state viscous incompressible flow under a
pressure difference in the gap between coaxial cylinders for the case where the inner cylinder rotates
at a constant angular velocity. The solution differs from the classical Couette–Poiseuille result by the
presence of radial mass transfer, which provides for interaction between the poloidal and azimuthal
circulations. The flow rate is found to depend linearly on the angular velocity of rotation of the inner
cylinder.
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1. We consider rotationally symmetric steady-state flow of a viscous incompressible fluid in the gap between
infinite coaxial cylinders. Let the inner cylinder of radius R0 rotate at a constant angular velocity ω relative to its
axis, and let the outer cylinder of radius R1 be at rest. The difference of the average pressures in two cross sections
of the gap S1 and S2 separated by a distance h is known. It is required to determine the hydrodynamic fields of the
flow that arises under these conditions and to calculate the flow rate. We assume that the z axis of the cylindrical
coordinates (r, ϕ, z) coincides with the common axis of the cylinders and that its origin is in the section S1.

The fluid flow is described by the Navier–Stokes equations

(v · ∇)v = ∇P + νΔv, ∇ · v = 0 (1)

supplemented by the attachment conditions on the boundaries of the gap:

r = R0: vr = vz = 0, vϕ = ωR0, r = R1: vr = vz = vϕ = 0. (2)

Here v = (vr, vϕ, vz) is the velocity, P is the pressure normalized to constant density, and ν is the kinematic
viscosity.

According to the formulation of the problem, in addition to the boundary conditions, it is necessary to
specify the difference of the pressures averaged over the sections S1 and S2:
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Assuming that the longitudinal and circumferential velocity components are linear functions of the coordi-
nate z, we seek a rotationally symmetric steady-state solution of problem (1)–(3) in the form [1, 2]
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(4)
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Here P0 is the pressure on the wall of the inner cylinder in the section S1, x = (r/R1)2 and Z = z/R1 are new
dimensionless variables, and u, v, G, W , V , and F are dimensionless functions of the argument x; the prime denotes
differentiation with respect to x.

Representation of the hydrodynamic fields in the form (4) reduces the Navier–Stokes equations with condi-
tions (2) and (3) to the following boundary-value problem for a system of ordinary differential equations for the
unknowns u, v, G, W , V , and F :

2xu′′′ = 2G+ (u − 2)u′′ − u′u′, 2xv′′ = uv′ − vu′, 4x2G′ = −v2; (5)

x = x0: u = u′ = v = 0, x = 1: u = u′ = v = 0; (6)

2xW ′′ = 2F ′ + (u− 2)W ′ − u′W, 2xV ′′ = uV ′ − vW, 4x2F ′′ = −vV ; (7)

x = x0: W = 0, V = Ω, F = F0, x = 1: W = V = F = 0; (8)

B = u′ − u2

4x
+

1
2
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(V (t)
t

)2

dt.

Here x0 = (R0/R1)2, Ω = ωR2
0/(

√
2 ν) is the dimensionless component of the axial angular momentum M1 = Ωz of

the rotating cylinder, and z is the unit vector whose direction coincides with the positive z direction. The constant
F0 is related to the specified difference of the average pressure (3) in the sections S1 and S2 by the equality

ΔP =
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We note that the unknowns u, v, and G are defined by the isolated subsystem (5), (6), which does not contain
parameters (except for the specified x0), and the boundary-value problem (7),(8) subordinate to the subsystem is
linear in W , V , and F . This allows the viscous fluid flow (4) to be considered a superposition of the background
flow (u, v, G) and the axially homogeneous flow (W , V , and F ) induced by the background flow and by the rotation
of the inner cylinder.

2. In the absence of the background flow (u = 0, v = 0, and G = 0), the solution of problem (7), (8)
coincides with the Couette–Poiseuille solution:
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(9)
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(Q is the volumetric fluid flow rate).
This flow regime is characterized by zero radial mass flux: vr = 0. Therefore, the poloidal and azimuthal

circulations do not interact. The poloidal circulation is completely determined by the longitudinal pressure gradient,
and the azimuthal circulation by the rotation velocity of the inner cylinder. For the same reason, the flow rate,
which is proportional to the pressure difference, does not depend on the angular velocity ω.

3. In [3], it was shown that the trivial solution of the nonlinear boundary-value problem (5), (6) is not
unique. In the paper cited, the problem of viscous fluid flow in the gap between an outer cylinder at rest and an
elongated inner cylinder was studied within the framework of the class of exact solutions (4) (W = 0, V = 0, and
F = 0) (the limiting case R0 = 0 was studied in [1]). Investigation of this problem reduces to finding solutions of
Eqs. (5) subject to the boundary conditions

x = x0: u = v = 0, u′ = s, x = 1: u = u′ = v = 0, (10)

which coincide with (6) for s = 0. Figure 1 shows curves of the parameters u′′(x0, s) = u′′0(s), v′(x0, s) = v′0(s),
and G(x0, s) = G0(s) of the Cauchy problem equivalent to problem (5), (10) versus the dimensionless constant
s which characterizes the rate of elongation of the inner cylinder. At the point s = 0, corresponding to the
undeformed cylinder, the values of the listed parameters are different from zero [for x0 = 0.01, u′′0(0) = −4.10423·103,
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Fig. 1. Parameters of problem (5), (10): u′′
0 (s) (1), v′

0(s) (2), and G0(s) (3).

Fig. 2. Solution of problem (5), (6) for x0 = 0.01: u(x) (1), u′(x) (2), v(x) (3), and G(x) (4).

v′0(0) = 116.8048, and G0(0) = 1.35366 ·103]. Thus, for s = 0, system (5), (10), and system (5) (6) have a nontrivial
solution. The solution of the problem is given in Fig. 2.

Numerical analysis of problem (5), (6) has shown that for all values of the geometrical parameter in the range
x0 = 0.01–0.90, the sign of the function v remains unchanged (Fig. 2). This implies that, at all points of the chosen
normal section of the gap Z = const, the direction of the dimensionless vector of the axial angular momentum of
the background flow M2 = vZz does not vary. The sign of the function u ≤ 0 also remains unchanged (Fig. 2).

The solution obtained describes the rotationally symmetric flow of a viscous fluid in the gap between mo-
tionless infinite cylinders with zero flow rate and zero average (throughout the volume) axial angular momentum.
The source of this motion is the swirling of the fluids [according to (4)] in the sections z = h1 and z = −h1, which
equidistant from the plane S1. This torsional rotation of the medium leads to the occurrence of radial and longi-
tudinal pressure gradients in it [see the first and third equations in (5)], which induce flows in the corresponding
directions.

4. By virtue of the linearity of problem (7), (8), the dependence of its solution on the parameters entering
the boundary conditions F0 and Ω should also be linear. This is easy to see when performing the substitution

W = ΩW1 − F0

g
u′, V = ΩV1 − F0

g
v, F = ΩF1 +

F0

g

1∫

x

G(t) dt, (11)

where the new unknowns W1, V1, and F1 satisfy Eqs. (7) with the following boundary conditions not containing
parameters:

x = x0: W1 = F1 = 0, V1 = 1, x = 1: W1 = V1 = F1 = 0. (12)

According to (11), the longitudinal and circumferential velocity components (4) depend linearly on the
specified average pressure difference ΔP and the dimensionless axial angular momentum of the rotating cylinder Ω.

Plots of the functions W1, V1, and F ′
1 [at x0 = 0.01, W ′

1(x0) = −26.286, V ′
1 = −12.658, and F ′(x0) = 22.976]

are given in Fig. 3.
An important characteristic of ducted and channeled flows is the flow rate. In view of the boundary conditions

and (11), from (4) we obtain

Q =

R1∫
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2π∫

0

vzr dϕ dr = 2πR1Ωq, q = −
1∫

x0

W1(x) dx. (13)
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Fig. 3. Solution of problem (7), (12) for x0 = 0.01: W1(x) (1), V1(x) (2), and F ′
1(x) (3).

In Couette–Poiseuille flow (9), the fluid moves in the direction of decreasing pressure along the channel at
a flow rate proportional to ΔP/H . An analysis of formula (13) leads to the different conclusion: the flow rate is
proportional to the angular velocity of rotation of the inner cylinder and does not depend on the pressure difference
and on the relative length of the gap region H to which this pressure difference is applied.

This unusual flow behavior is due to the presence of background flow of the special form (5), (6) in it,
which violates the monotonic longitudinal pressure distribution. This flow, together with the motion induced by
the rotation of the inner cylinder, forms a self-coordinate field of inertia forces. To characterize this field, it is
reasonable to introduce the vector

J = z
∂I

∂Z
= Ωvz

with potential I equal to the scalar product of the axial angular momenta of the rotating cylinder and the background
flow (M1 · M2 = ΩvZ).

It is easy to see that the direction of the mean fluid flow vector j = Qz is unequivocally determined by the
field J . For this, it is sufficient to notice that system (5)–(7), (12) assumes the transformation of the unknowns u,
v, G, W1, V1, and F1 and the corresponding transformation of the vectors:

v → −v: u→ u, G→ G, W1 → −W1, V1 → V1, F1 → −F1,

J → −J : j → −j, M2 → −M2.

Taking into account the results of numerical investigation of problem (5)–(7), (12) (Fig. 4), according to which, for
v ≥ 0 (v ≤ 0), the constant q is positive (negative) over the entire range of the geometrical parameter x0, one can
conclude that the vectors j and J are codirected. Thus, the average mass transfer in the flow (4) occurs in the
direction of increasing potential I (as a function of Z), i.e., to the part of the channel where its inner wall and the
background flow rotate in the same direction (M1 · M2 = I > 0).

5. The streamlines of classical Couette–Poiseuille flow (9) are cylindrical helices with a constant step. Flow
of type (4) has much more complex spatial structure. Figure 5 gives qualitative pictures of the isolines of the
dimensionless stream functions and the axial angular momentum of the flow (4) determined from the formulas

Ψ =
ψ

νR1
= Ω

x∫

x0

W1(t) dt+
(
Z − F0

g

)
u, M =

rvϕ√
2 ν

= ΩV1 +
(
Z − F0

g

)
v,

where ψ is the true (dimensional) stream function.
The poloidal flow presented in Fig. 5a (v ≥ 0 and Ω > 0) can be conditionally divided into three regions:

the flow-through zone located between the isolines Ψ = 0 and Ψ = Q/(νR1) and two recirculation zones: Ψ < 0
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and Ψ > Q/(νR1). In the flow-through region (for negative values of z), the fluid moves along the outer cylinder
(Fig. 5a) and rotates in opposition to the rotation of the inner cylinder (Fig. 5b). In the vicinity of the section
z = 0, the flow, changing the swirling direction, moves to the inner wall of the gap and flows along it, rotating
almost as a rigid body. Since u ≤ 0, the fluid particles move toward the inner cylinder over the entire flow region,
i.e., the rotating wall of the gap draws in the fluid.

It should be noted that for x ≈ 1, the functions G and F ′ remain almost constant (see Figs. 2 and 3).
As a consequence, the pressure at the solid outer wall varies only slightly in the radial direction, suggesting the
possible presence of a boundary layer. The collision of the flows of the flow-through zone and the recirculation flow
Ψ > Q/(νR1) results in the separation of the boundary layer from the outer solid wall at the point of branching
from the last isoline Ψ = Q/(νR1). Flow separation also occurs at the rotating cylinder (isoline Ψ = 0), which is
accompanied by the occurrence of return flow in the flow-through region (see Fig. 5a).

This work was supported by the Russian Foundation for Basic Research (Grant No. 07-01-96003) and the
Program of support of young scientists of the Ural Division of the Russian Academy of Sciences.
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